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a b s t r a c t

During the last few decades, Data-intensive File Systems (DiFS), such as Google File System (GFS) and
HadoopDistributed File System (HDFS) have become the key storage architectures for big data processing.
These storage systems usually divide files into fixed-sized blocks (or chunks). Each block is replicated
(usually three-way) and distributed pseudo-randomly across the cluster. The master node (namenode)
uses a huge table to record the locations of each block and its replicas. However, with the increasing
size of the data, the block location table and its corresponding maintenance could occupy more than half
of the memory space and 30% of processing capacity in master node, which severely limit the scalability
and performance ofmaster node.We argue that the physical data distribution andmaintenance should be
separated out from themetadatamanagement and performed by each storage node autonomously. In this
paper, we propose Deister, a novel block management scheme that is built on an invertible deterministic
declustering distribution method called Intersected Shifted Declustering (ISD). Deister is amendable to
current research on scaling the namespace management in master node. In Deister, the huge table for
maintaining the block locations in the master node is eliminated and the maintenance of the block-
node mapping is performed autonomously on each data node. Results show that as compared with the
HDFS default configuration, Deister is able to achieve identical performance with a saving of about half
of the RAM space and 30% of processing capacity in master node and is expected to scale to double the
size of current single namenode HDFS cluster, pushing the scalability bottleneck of master node back to
namespace management.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the era of ‘‘Big Data’’, vast amounts of data are analyzed
by both scientists and Internet companies to make scientific
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discoveries and study business trends, etc. [2]. To speedup
this analysis process, data-intensive computing frameworks i.e.
MapReduce Framework have been proposed. Accompanied with
this kind of new framework, co-located storage architectures
referred to as Data Intensive File Systems (DiFSs) have been
proposed to provide high performance for these types of jobs. DiFSs
are featured as high-throughput, highly-reliable and cost-effective.
GFS [19], HDFS [3], andQuantcast File System (QFS) [18] are leading
examples of DiFS.
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Fig. 1. Metadata management method in HDFS, a typical DiFS.

Current DiFSs adopt a master–slave architecture and are built
on top of the local file system,where all of themetadata ismanaged
by the master nodes and the physical data is managed by the local
file systems on the slave (data) nodes. Tomaintain high availability,
these storage systems usually divide files into fixed-sized blocks
(or chunks). Each block is replicated (usually three-way) and
distributed pseudo-randomly across the clusterwith consideration
of rack-awareness. In order to track these distributed blocks on
hundreds or thousands of nodes, the master node must record the
node locations of all blocks, as shown in Fig. 1. This is referred to as
block-node mapping. Moreover, to guarantee the accuracy of block-
node mapping, the master node must periodically receive block
reports from each data node to check the blocks’ locations and
update the mapping information. We refer to these management
schemes as DiFS block management (block management is used for
simplicity in the rest of this paper). This is an extra layer beyond
the traditional namespace management. DiFS block management
offers great data distribution flexibility because each block is
placed correlation-free. However, it often creates high cost on the
master node in terms of memory and maintenance.

• Memory cost: The block-node mapping’s memory consump-
tion grows linearly with the number of blocks. It is observed
that on each master node, with a file-to-block ratio of 1:1, the
block-node mapping takes more than 40% of the total used
memory. In addition, the proportion will reach more than 60%
with a file-to-block ratio of 1:5 [20].

• Maintenance cost: The physical blocks are managed in the
local file system on the slave nodes, blocks may be lost in the
case of data corruption, node failure, etc. To guaranteemapping
accuracy, the blockmanagement scheme requires a high cost on
the master node’s CPU and network bandwidth to synchronize
the block-node mapping with the actual stored blocks on the
data nodes [21]. For example, in a 10,000-node cluster with a
storage capacity of 60 PB (file to block ratio is 1:1.5) [20], 30%
of themaster node’s total processing capacity is used to process
the block reports.

As data size continues to increase, these costs become non-
negligible,which soonmakes themaster node a scalability andper-
formance bottleneck due to the hardware limitations of themaster
node’smemory heap size and processing capability. To address this
bottleneck, the Namenode (master node) Federation [1] schema is
proposed to split the single master node into many independent
master nodes and thus allows the metadata management to scale
‘‘horizontally’’. However, the performance and scalability of each
master node, namely the ‘‘vertical scalability’’, are barely improved
since the resource contention between blockmanagement and the

traditional namespace management still exists. We believe a more
fundamental solution is to ‘‘vertically’’ scale each master node.

One intuitive approach is to separate the block management
from themaster node. For example, standalone blockmanagement
has been proposed by a Yahoo! team,which aims tomove the block
management module out of the master node to some dedicated
block management (BM) nodes [21]. Though the memory and
maintenance cost are reduced on the master node, this approach
may slow down the metadata lookup operations due to the extra
hop of network lookup that is introduced.

To solve the issue of maintenance and memory cost, while
maintaining the merits of current block management schema, we
propose Deister. Deister consists of a deterministic two-step block
distribution algorithmcalled Intersected ShiftedDeclustering (ISD)
and an autonomous block-node mapping maintenance scheme.

The basic idea of Deister is to distribute the data deterministi-
cally based on an invertible mathematical function, so that each
block location can be calculated, thus allowing the removal of
the centralized/decentralized record-based block-node mapping.
Moreover, the block-nodemappingmaintenance can be performed
on each data node autonomously by using the inverse function of
ISD. With ISD’s inverse function, each data node could calculate
the list of blocks it should store, which can be compared with the
locally generated block report for further checking operations. In
this way, the two largest overheads of block management, mem-
ory spaces and maintenance cost, can be minimized. Deister is de-
signed to solve the scalability issue beyond thousands of nodes
scale where its performance gains are more substantial. Our pre-
liminary results show that our placement policy has the same I/O
throughput with the HDFS default random layout, while the mem-
ory space and processing capacity savings on the master node are
about 50% and 30% respectively, which enable the master node to
support more metadata operations and about double size of cur-
rent single namenode clusters.

2. Background

The booming size of ‘‘big data’’ imposes a variety of demands on
storage organizations such as maintaining reliability and allowing
for scale-out ability. Distributed file systems such as GFS and
HDFS distribute blocks randomly and record each block-node
mapping entry in memory. However, this approach does not
scale out, since a large amount of memory and CPU cost will be
spent in maintaining the block-node map. To completely design
a scale-out block-node mapping/maintenance system for large-
scale distributed systems, we formally define following desirable
properties to achieve.

1. Low memory space cost. The memory space used to store or
track the locations of each block should be constant and should
not grow with the increasing number of blocks.

2. Low maintenance cost. The cost of synchronizing block-node
information with the physical data should not grow with the
increasing size of the cluster.

3. Efficient addressing. The locations of requested data blocks
should be efficiently retrieved without consuming excessive
computation or memory resources.

4. Low-overhead scale-out ability. When storage nodes are
added or removed, the block-node remapping should be
incrementally built on the existing block-node mapping such
that the data shuffled can be minimized.

5. High recoverability. This contains two aspects:
(i) Multiple failure recovery. An r-way (r ≥ 2) replication

architecture is able to provide (r − 1) failure recovery.
(ii) Parallelism recovery. In the event of node failure, the lost

blocks are able to be recovered (re-replicated) in parallel.
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Table 1
Comparison among block-nodemapping schemes, where N is the number of data nodes, B is the number of blocks, c is the metadata size of each block, net means one round
of network, CM is the cluster map is Crush, and DM is the data node map in Deister.

Examples Memory space Maintenance cost Efficient addressing Scale-out Recoverability

Directory based
DiFS default GFS, HDFS O(B ∗ c) High O(1) ∼ O(B) Y High
Standalone Standalone O(B ∗ c) Low O(1) ∼ O(B) + O(net) Y High
BM BM

Computation based
Hashing Ceph CRUSH O(CM) High O(logN) Y High
Declustering SD, Chain 0 Low O(1) N Low
Deister Deister O(DM) Low O(1) Y High

2.1. Current block mapping schemes

In this section, we examine the two possible solutions to reduce
the BM costs for the master nodes, including directory-based
mapping and computation-based mapping. And we analyze their
satisfaction of five properties. A comparison summary is given in
Table 1.

2.1.1. Directory-based mapping
As mentioned above, current DiFSs distribute the blocks

pseudo-randomly with the consideration of network topology and
rack-awareness and then store the locations of all blocks in a
lookup table/tree. And the block distributed by pseudo-random
placement is correlation-free. This directory-based mapping
naturally satisfies Property 3, 4 and 5.

However, directory-based mapping approach incurs high cost
on memory space and maintenance cost: (1) It consumes a large
memory heap of the master nodes. As each block has multiple
replications, the size of this block map grows much faster than the
size of the file/block inodes. (2) Extra care is needed to maintain
the consistency between the blockmap and the actual status of the
data nodes and blocks. This includes block reports and replication
monitor/queue. The block reports are used for the sanity check
caused by software bugs or unauthorized access. The replication
monitor/queue tracks the actual replica numbers of each block
to prevent losing data from hardware/software failures. These
services consume a large number of resources on the master
node. For example, block reports, replication queue andnamespace
management share the same coarse-grain locks,which slows down
the master server’s performance.

To reduce the memory and maintenance cost in current
DiFS, D. Sharp et al. proposed a standalone block management
in HDFS, which aims to separate the block management out
of the namenode [21]. As the namenode in the approach is
solely handling the namespace operations, this approach will
improve the performance of the namenode and further improve
the cluster’s scalability. However, HDFS may suffer a slow
metadata lookup. Because compared to the original lookup process
that finishes within the namenode memory, each metadata
lookup involves an extra round of network messaging between
namenodes and block manager nodes.

2.2. Computational-based mapping

Amore reasonable solution for reducing the blockmanagement
costs is to use computational-based mapping, which uses a
deterministic addressing function for both block distributing and
locating. Representatives include hashing and declustering.

2.2.1. Hashing
Hashing is widely adopted by many distributed file systems,

such as Amazon Dynamo [8], OceanStore [14], Ceph [22], etc. It
allows the elimination of the cost for directory-basedmapping and
the system can be balanced due to the random nature of hash

functions. Based on the scope of hash mapping, we divide the
hash mapping methods into two categories: fully decentralized
and partially decentralized.

Fully decentralized hashing distributes both namespace infor-
mation (file inodes, etc.) and blocks on all servers. For example,
peer-to-peer system such as OceanStore [14] and CFS [7] maintain
a distributed hash table (DHT) as the distribution method. It first
hashes the directory/file names to generate a key and distribute
themacross a unified key space across the cluster. To achieve scale-
out ability, linear hashing [15], extensible hashing [9] and con-
sistent hashing [13] are proposed. Among them, systems such as
Amazon Dynamo [8] and GlusterFS [5] adopt consistent hashing.
While LH∗ [16,17] uses linear hashing. However, it is hard to ap-
ply fully decentralized hashing in DiFS because the architecture is
fundamentally different. While DiFS uses a master–slave model, in
which a few master servers manage and guarantee strong consis-
tency, block replications, etc., the fully hashing scheme is a peer-
to-peer model and eventual consistency [8].

Partially decentralized hashing uses hash mapping to only
distribute blocks across datanodes, while the namespace is
maintained by other methods such as tree/table mapping. For
example, Ceph maintains its namespace on a few metadata
servers using sub-tree partitioning; and distribute the blocks using
CRUSH [11], a decentralized data distribution algorithm. CRUSH
is built upon a data structure called cluster map which keeps
track of the hardware infrastructure and failure domains. Both
distribution and data lookup process use the CRUSH algorithm
so no location information needs to be stored. As the blocks are
distributed deterministically, finding each block can be achieved
via calculation on any data nodes. While CRUSH provides similar
advantages as Deister, namely fast deterministic mapping and
little storage cost on metadata servers, its essential distribution
hash function is not reversible. As CRUSH does not have a
centralized point of block management, the consistency of a block
is maintained by ‘‘peering’’, which is the process of exchanging
block reports within the same placement group. This process
involves a considerable amount of network messaging, while the
consistency check of Deister can be achieved gracefully by using a
reversible addressing function with little computation overhead.

2.2.2. Deterministic declustering
The deterministic declustering, such as Chain-declustering [12],

group-rotational declustering [4], etc., is widely adopted in small-
sized structures such as RAID systems. Different from hashing, the
object placement is pre-determined and calculated by a certain
invertible math function on the RAID controller. Using these
approaches, all the block locations can be fast and easily calculated
and no mapping information needs to be maintained. Moreover,
the maintenance cost can be significantly reduced by offloading
the internal workload to each datanode utilizing the inverse math
distribution function.

However, the declustering mapping cannot scale-out because
the location of each block is calculated based on the total number
of nodes in the system Any changes, such as node addition or
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removal, will result in large amount of data reshuffle. Also this
layout is designed for homogeneous environmentswhere all nodes
are identical. Moreover, declustering placement is designed for
node reconstruction, which takes far longer time than the DiFS re-
replication time.

Evaluation of existing methods. We briefly examine exist-
ing approaches used for block-node mapping information man-
agement. As discussed in the first section, the major drawback
of random block placement methods [19,3] and the standalone
method [21] is the largememory space overhead for storing block-
node information. In comparison, computational-based meth-
ods such as Hashing or Crush [8,23] could reduce the memory
space overhead but maintain block-node information inefficiently.
Methods such as declustering [12,4,6] could reduce the mem-
ory space overhead and support consistency checking efficiently.
However, declustering techniques cannot be directly applied to
large-scale systems since they are not able to efficiently scale out
during system changes. We summarize how these methods satisfy
the properties listed above in Table 1.

3. Deister

The Intersected Shifted Declustering distribution algorithm
is extended from our previous work, Shifted Declustering (SD)
[26,25], which belongs to the deterministic declustering layout de-
scribed the background section. It obtains optimal parallelism in
a wide range of configurations, and obtains optimal high perfor-
mance and load balancing in both fault-free and degraded modes.
Similar to other deterministic layouts, both data distribution and
data lookup are achieved using the placement algorithm, which
can significantly reduce thememory space consumption andmain-
tenance cost. However, as this layout is initially designed for small-
scale RAID like systems, directly applying shifted declustering to
HDFS will cause two main problems. First, the storage system will
not scale out, because the location of each block is calculated based
on the total number of nodes in the system, any changes, such as
node addition or removal, will result in reshuffling of the whole
data blocks. Second, the recovery ability is unacceptable. If a node
fails, the recovery option is either reconstructing it with a new
node or re-replicating themissing blocks to current live nodeswith
a reshuffling of the whole data blocks. Writing all missing blocks
to a new node or a systemwide reshuffling both require extremely
long time. The group based shifted declustering in [25] did not ad-
dress the low recovery ability issue and expanded the scalability of
shifted declustering layout only in a limited degree. In summary,
there are two major design challenges when applying SD in the
DiFS: Low-overhead scale-out ability and High recoverability.

In order to effectively address the two challenges above as well
as eliminatememory andmaintenance overhead from the root, we
have developed a new system called Deister, as shown in Fig. 2.
Deister exploits a deterministic block mapping function, which is
composed of a series of mathematical functions, for block-node
distribution and retrieval. This techniquewill allow for themillions
or billions of block-node records to be removed. Also this block
mapping’s reverse lookup function enables autonomous block
mapping maintenance on each data node. Therefore, Deister will
achieve light-weight autonomous block management for large-
scale data-intensive file systems, e.g., HDFS.

3.1. Inversable intersected shifted declustering with decoupled ad-
dress mapping

In order to deal with scale-out challenge, we add an abstract
mapping layer referred to as, Logical Group (LG), between the
original block to node mapping. Each data node can belong to
multiple logic groups and blocks are mapped to these groups

Fig. 2. Proposed metadata management solution.

before they are placed on the data nodes. The number of nodes
in each group is the same, which is referred as group size in this
paper. Themapping information between nodes and LG is recorded
in a small compact table called datanode map, which can be
stored on any of the nodes in the cluster. When given a block id,
our methods firstly identify the block’s mapped groups using a
linear hash function as shown in Eq. (1), then we obtain the inner
group ID through Eq. (2) and lastly return the nodes containing the
given block using our Shifted Declustering [26], a novel placement-
ideal data layout, as shown Eq. (3). Eqs. (1)–(3) constitute our
deterministic calculation methods detailed in later block-to-node
mapping steps.We show an example of Deister’smapping function
in Fig. 3.

3.1.1. Block-to-node mapping
Given the block ID, the block-to-node distribution can be

resolved into block-to-group mapping and inner group block
distribution.
Step 1 Block-to-group mapping. During this step, a given block b is
mapped to a group g . Assume the initial total number of groups X ,
is indexed from 0 to X − 1 and is static; a module-based function
is enough to map a block b to a group g as g = b%X . However,
in dynamic clusters, with new storage nodes deployed/removed,
the number of groups, X , will change to X ′, so b%X ≠ b%X ′. This
inequality implies that a large number of blocks need to be shuffled
between the groups, resulting in system performance degradation.
To avoid a large amount of data shuffling, we use linear hashing to
map a block to a group. For a simple illustration, assume that the
number of newly added groups s is smaller than X , g = b%(2 · X)
if s > b%X . Such a module strategy could allow us to achieve low
remapping costs in group expansion. For instance, with respect to
the first group added, only the blocks with b%(2 · X) = X will be
remapped from group 0 to the newly added group, indexed as X ,
while all other blocks will not be affected. The complete equations
for block to group mapping are as follows. x is the current number
of groups. s in the following equations can be any number of newly
added groups.

g =


b%(X · 2l), if b%(X · 2l) ≥ x + s − X · 2l

b%(2l+1
· X), if b%(X · 2l) < x + s − X · 2l (1)

where l = ⌊log2
x+s
X ⌋.

Step 2(a) Block ID reassignment. Because we map the blocks
b (labeled as 0, 1, 2, . . .) into multiple groups during block-
to-group mapping, the blocks mapped to a specific group no
longer have consecutive IDs. This can cause the data blocks to
be unevenly distributed among the group nodes if the block
placement method based on id is directly applied. To address this
issue, each block is given a new block ID, a, such that all blocks
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Fig. 3. Our proposed decoupled address mapping. n,N,m represent the number of blocks, Nodes, and groups, respectively. Here, use N = 128, group size = 4 as an
example. (a) Instead of maintaining billions of block-node entries, our proposed deterministic methods only record the logic groups to provide block-node mapping.
(b) Given a physical node, the reverse-lookup could be performed on each storage node for self-block checking.

are consecutively ordered before block-to-node mapping occurs.
This can be achievedwith the following functions, the definition of
variables are the same as in Step 1.

a =


⌊b/(X · 2l)⌋, if b%(X · 2l) ≥ x + s − X · 2l

⌊b/(2l+1
· X)⌋, if b%(X · 2l) < x + s − X · 2l.

(2)

Step 2(b) Inner group block-to-node mapping. During this step,
blocks and their replicas are distributed to nodes within each
group. Themost important requirement for block distribution is to
ensure that the block replicas are evenly distributed within each
group, i.e., any two nodes within a group should share the same
amount of redundant data, which allows the lost data on the failed
node to be recovered in parallel. Our proposed shifted declustering
method, originally designed for the purpose of placing redundant
data on disks, could satisfy this requirement [26]. As with placing
data on disks, we employ the shifted declustering method to place
a block and its replicas on nodes in a group in a circular fashion. To
briefly illustrate thismethod,we assume that our cluster contains 4
nodes, and each blockwill have 3 replicas. The 4 nodes are indexed
from0, 1, 2, 3, and a redundant block is recordedwith (a, i), where
a is the block id and i is the replica number with the value of 0, 1,
or 2 (three replicas). Given a and i, the index of the target node d is
calculated with the function,

d = node(a, i) = (a + i)%4. (3)

3.1.2. Node-to-block lookup (reverse lookup)
The process of finding the ids of all blocks that reside on a given

node is called reverse lookup. The reverse lookup is an essential step
for autonomous block-node mapping maintenance.
Step 1 Find the inner group block IDs. Because the blocks are
distributed within the group through a circular fashion using
shifted declustering method, the blocks’ id, a can be retrieved via
an iteration calculation. For instance, in the example with group
size of 4,

d = (a + i)%4 → reverse → a = 4 · j + (d − i)%4 (4)

where i iterates through 0, 1, 2 for each j = 0, 1, 2 . . . , n, where 3n
is the number of blocks distributed in this node calculated through
our consecutive block id policy. The inverse function of shifted
declustered for all cases is detailed in [25].
Step 2Map a to the original block IDs b. Through Eq. (2), we reassign
the block b, a new consecutively ordered ID a, in a specific group.

The block ID a calculated in the above step, needs to be mapped to
their original block b. The following function is the inverse function
of Eq. (2) and the value g is the index of the logic group containing
the given node,

b =


(2l

· X · a) + g, if b%(X · 2l) ≥ s
(2l+1

· X · a) + g, otherwise.
(5)

Step 3 Join all. Since a given node may be selected into multiple
logic groups, the blocks’ id associated with a given node should be
found from all its participated groups and joined together. Thus,
for each logic groups, we repeat above Steps 1 and 2, and then join
all the results.

3.2. High recoverability and scale-out ability

In today’s commodity clusters, cluster changes such as node
failure or addition are very common. These changes would require
that the file system frequently redistributes its data in order to
account for the newly deployed hardware. In our Deister example
system, we implement ‘‘decoupled addressmapping’’ to efficiently
reduce data shuffling in the event of cluster change.

As shown in Fig. 4, two logic groups are allowed to share the
samephysical node in order tominimize thenumber of blocks to be
remapped and shuffled during node addition. Such an architecture
requires an efficient method of assigning nodes to groups. One
specific challenge associated with the selection of physical nodes
and their assigned groups is ensuring that all nodes be assigned to
approximately the same number of groups so as to maintain load
balance between nodes.

In order to deal with the above challenge, we informally define
the coverage for a node j, denoted covj, as a metric based on the
number of existing groups containing nodej. Coverage is formally
defined in Eq. (6). Intuitively, a nodej appearing inmore groupswill
store more data based on our hashing calculations in Eq. (1). We
divide the x + s groups into three sections based on their group id,
shown as follows.

section_1 [0, (x + s − X · 2l)]

section_2 [(x+ s− X · 2l), X · 2l
]

section_3 [X · 2l, x + s]

We denote α1 as the number of groups in section_1 and
section_3 that contain node j and α2 as the number of groups in
section_2, that contains node j. Based on the hashing mapping in
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Fig. 4. Our proposed smart node to group mapping algorithm ensures the new group LG1000 shares 3 physical nodes with one existing group to minimize the number of
remapped blocks. Blocks 1000 and 3000 along with their 3 replicas are re-mapped to new group LG1000 , but only one replica (b = 3000, i = 2) is physically moved.

Eq. (1), we define the coverage factor for node j as,

covj =

α1
2 + α2

x + s
=

α1 + 2α2

2(x + s)
. (6)

Algorithm 1 Smart Node-group Mapping: Node Failure
N =


node0, node1, ..., noden−1


// n cluster nodes

COVN =

cov0, cov1, ..., covn−1


// n nodes’ coverage

G =

g0, g1..., gx+s−1


, gk ⊂ N // all groups

nodei , //failed node
R = ∅

Steps:
Find: Gi = {gk ∈ G | nodei ∈ gk}
for gj ∈ Gi do

Let: L =

N − gj


Let: COVL = {covk | nodek ∈ L}
Find: noder ∈ L | noder = min COVL, noder /∈ R
Append noder to R.
Replace nodei with noder
Update COVN and G

end for

3.2.1. Node failure
In the event of node failure, the lost data on the failed node

needs to be recovered. In ourDeister system, each group containing
the failed nodewill find a distinct live node to replace the failed one
in order to achieve parallel recovery, as shown in Algorithm 1. For
each affected group gj, the set of live nodes that are not in gj will
be selected as candidate nodes L. Then the noder with the smallest
coverage in L will be used to replace the failed node for gj. Finally,
the coverage of nodes COVN and G will be updated accordingly,
before selecting the replacement node for the next affected group.
Fig. 6 shows an example of choosing recovery targets when Node
2 fails. As Node 2 is initially covered by Groups 0, 1, 2, 3, each
group independently chooses its recovery target—Groups 0, 1, 2,
3 choose to reconstruct their missing blocks to Nodes 6, 3, 1, 5,
respectively. The recovery parallelism of our proposed approach
is determined by the number of groups that cover a failed node.
The data movement caused by a node failure is optimal in Deister,
which is wfailed/W of total data (where W is the total weight of all
nodes). wfailed can be calculated based on failure node’s coverage,
wfailed = covfailed/

N
i=1 covi.

3.2.2. Node addition
When one or multiple new cluster nodes are deployed on a

storage system, some of the stored data will need to be transferred
from existing nodes to the newly added ones. The goal of our node
addition algorithm is to guarantee that the data is only shuffled
between existing nodes and the newly added nodes. Algorithm 2
presents the process of group expansion when new nodes are
added in our Deister system. If the coverage of the newly added
node is known, the number of newly added groups, g , can be
determined according to Eq. (6). According to Eq. (1), we know that
half of the blocks belonging to a specific groupwill be remapped to
the newly added group. Thus, through maximizing the number of

Algorithm 2 Smart Node-group Mapping: Nodes Addition
COVN =


cov0, cov1, ..., covn−1


// n nodes’ coverage

G =


g0, g1..., gX ·2l


// all groups

Newly added s nodes
Steps:
Mirror current groups, G =


g0, g1..., gX ·2l+1


Calculate covave =

X ·2l+1
·group size
N+s

Calculate the number of candidate groups g with Eqn(6)
for each nodei in x nodes do

for k = 1; k <= g; k + + do
Randomly selected groupj, X · 2l < j < X · 2l+1

Select nodemax with the largest coverage in groupj
while groupj contains nodei or covmax < covave do

Randomly selected groupj, X · 2l < j < X · 2l+1

Select nodemax with the largest coverage in groupj
end while
Replace nodemax with nodei .
Update covmax and covi

end for
end for

nodes shared between the newly added group and an existing one,
the number of blocks to be shuffled will be minimized as shown in
Fig. 4. So in our system, whenever groups = X · 2l and new groups
are being added, we double the current group size by mirroring all
current groups. By default, the coverage of the added node is set to
an average coverage as,

covave =
X · 2l+1

· group size
N + i

(7)

where N is current number of nodes; i is newly added number
of nodes. For each newly added node, Deister will replace one
nodewith this new node in each selected g new groups. Moreover,
to maintain load balance, the node to be replaced shall have the
largest coverage valuewithin the newgroup. If the largest coverage
value is still smaller than covave, another new group will be re-
selected into the g new groups. Such cluster expansion will also
result in an optimal fraction, wnew/W , of total data to be shuffled.

Fig. 4 shows an example of adding a new node, the block
remapping only occurs in group LG1, in which blocks 1000, and
3000 with 3 replicas are remapped to the new group LG1000, but
only one replica out of 6 is physically moved.

3.2.3. I/O behavior during node failure or addition
In Deister, the read or write I/O will not be stalled during node

failure or addition. Deister maintains two versions of datanode
map during nodes failure or addition. One is the currently used
version before node changes, the other one is the temporary under-
construction version after node changes. For node addition, the
under-construction version will be sent to data nodes to direct
the data shuffling process. As described in Section 3.2.2, some
blocks will be moved to the newly added node from the old nodes.
In this process, each old node does not delete its local copies of
the moved blocks. Thus, all read operations can continue to be
served by the old datanodemapwithout failure, while all thewrite
operations after the shuffling process begins will be served by the
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Fig. 5. Overall architecture of autonomous block-nodemappingmaintenance. Data
nodes do not exchange any metadata with each other.

Fig. 6. Parallel reconstruction for Node 2 which is covered by Groups 0, 1, 3, and 5.
Each group replaced Node 2 with Nodes 6, 3, 1 and 5 respectively.

under-construction datanode map. After the shuffling process is
complete, the old datanode map will be completely replaced by
the under-construction version and each old data node will then
delete its local copies of the moved blocks. Similar for node failure,
all the new write I/O after the node failure will be served by the
under-construction datanodemapwhile the read I/Owill continue
to be served by the datanode map before the node failure until the
recovery process is complete.

3.3. Autonomous block-node mapping maintenance

In the previous sections, we use deterministic methods to re-
place the block-to-node mapping in order to eliminate the mem-
ory overhead on the master node. In this section, we propose our
autonomous block-node mapping maintenance to eliminate the
maintenance overhead on the master node. Two key maintenance
tasks are needed to keep the block-node mapping up-to-date.

• Consistency checking: the recorded block-nodemapping on the
master node has to be synchronized with the blocks actually
stored on each data node.

• Handling recovery: in case of block loss, the DiFS has to track
the under-replicated blocks and recover them accordingly.

In current DiFSs, these two tasks can be completed only on the
master node. The master node periodically receives block reports
from all data nodes, updates its block-node mapping records,
and recovers under-replicated blocks accordingly. However, these
two maintenance tasks require non-negligible CPU and network
resources on the master node. Therefore, in Deister, we propose
that each data node performs these two tasks itself by using
ISD’s reverse lookup function. These two tasks are performed
independently without any metadata exchange. Fig. 5 gives a high
level architecture of this autonomous maintenance schema.

3.3.1. Autonomous block-node mapping consistency check
To perform consistency checking autonomously, each data

node first has to know what blocks it should store. Instead of
consulting the master node for this information, each data node
could calculate this information locally with ISD’s reverse lookup
function. The only requirement for this calculation is a copy of
datanode map, which is relatively small. Then, each data node
scans its local file system and gets a list of blocks it currently
stores. Finally, the comparison is conducted between the stored
block list and the calculated block list. The physical block locations
will be adjusted based on the calculated location information. The
locations of the physical blocks should unconditionally follow the
distribution function.

3.3.2. Autonomous block recovery
Lost blocks found during the block-node mapping consistency

checking can be easily recovered by the data node itself, since it
has a copy of the datanode map, and it can use ISD to calculate the
locations of lost blocks’ live replicas, and then copy the live replicas
from the calculated locations.

In the case of node failure, the master node will first update the
datanode map using algorithms in Section 3.2. Upon receiving the
datanode map updates, each data node could autonomously start
the recovery process for the node failure. Each data node will first
check whether its LG membership has changed. If the data node’s
LG membership changed, it will use ISD’s reverse lookup function
to calculate a new list of blocks it should store and recover the
physically missing blocks in this list. Fig. 6 shows an example of
the process of recovering the lost blocks on a failed node.

3.3.3. Network efficiency
For block consistency check, no networkmetadatamessages are

required. All the required blockmetadata can be calculated locally.
As for node failure, only a datanode map update need to be sent
to each data node. However, in HDFS, recovering each block on
the failed node will require one network metadata message from
the namenode. In practice, the number of missing blocks is several
magnitudes higher than the number of data nodes.

4. Evaluations

We have implemented a Deister prototype and only imple-
mented a block management module of DiFS, rather than a whole
new DiFS. Since block management is tightly coupled with other
modules in currentDiFS such as name spacemanagement, it is hard
to directly measure the performance metrics, such as memory and
CPU usage, of current block management. On the other hand, Deis-
ter’s performance gains are more substantial beyond thousands of
nodes scale, but we have limited cluster resources, it is not pos-
sible for us to conduct experiments at thousands of nodes scale.
Therefore, in this paper, we extract the blockmanagementmodule
of HDFS source code. Then, we remove its dependencies on other
HDFS modules. The core components such as BlocksMap, replica-
tionThread, neededReplications, pendingReplications, processReport,
DatanodeManager, HeartbeatManager, etc., are all kept. Namenode
and data nodes in both HDFS and Deister are implemented as two
separate processes hosted on two machines. Each data node is im-
plemented as a thread in the data nodes process, so it is easy to
simulate thousands of data nodes. Finally,we build an independent
block management program for each of HDFS and Deister. Deister
is designed to satisfy all of the desired five properties of DiFS block
management as discussed in Section 2.We evaluate each of the five
properties of Deister relative to HDFS.

Experimental setup. All our experiments are conducted on
Marmot and CASS clusters. Marmot is a cluster of PRObE on-site
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Fig. 7. Performance comparison between random and ISD replica Placement.
TeraGen is all write while TeraSort has read and write.

project [10,24] and housed at CMU in Pittsburgh. The system has
128 nodes/256 cores and each node in the cluster has dual 1.6 GHz
AMD Opteron processors, 16 GB of memory, Gigabit Ethernet, and
a 2 TB Western Digital SATA disk drive. CASS consists of 46 nodes
on two racks, one rack including 15 compute nodes and one head
node and the other rack containing 30 compute nodes. Each node
is equipped with two Dual-Core 2.33 GHz Xeon processors, 20 GB
of memory, Gigabit Ethernet and a 500 GB SATA hard drive.

4.1. Block distribution

4.1.1. ISD placement vs. random placement
In this section, we test the effect of Deister’s ISD placement

on Hadoop jobs and I/O performance relative to HDFS’s random
placement. ISD placement is implemented into the original HDFS.
We deploy a Hadoop cluster on Marmot with one node serving as
the master while 100 nodes serve as slaves. The default block size
is set to 64 MB. We choose TeraGen and TeraSort benchmark suit,
because they are typical write and read heavy MapReduce jobs.
TeraGen benchmarks are run with the same configuration on the
same cluster as follows: a total amount of 1 TB of data is written;
and each file has 3 replicas. Therefore, there are 3 TB of data
generated by the TeraGen job. Then, the TeraSort is used to sort
the generated data with the same number of mappers assigned.

We can see from Fig. 7 that the execution time on both TeraGen
and TeraSort jobs is almost the same. We conclude ISD layout has
negligible effect on the performance of Hadoop jobs. We also run
the TestDFSIO benchmark to further test Deister’s I/O performance.
100 mappers are configured with each reading and writing 1 GB
data. The results are shown in Fig. 8. We can see that the I/O
performance of Deister is almost the same with HDFS.

4.1.2. Memory space
We measure the memory usage of block management for

storingmillions of blocks on bothHDFS andDeister on CASS cluster
as shown in Figs. 9 and 10. In our experiment, each block has
3 replicas and each data node with 1 TB capacity is capable of
storing 18,000 blocks. Deister’s memory usage is measured with
different number of groups and group sizes. Higher number of
groups and larger group size will require more memory space. In
Fig. 9, we first show the memory space cost with growing number

Fig. 9. Block management memory usage as the number of blocks increases.
The number of data nodes is fixed to 10,000. Deister is configured with different
number of group × group size.

Fig. 10. Block management memory usage as the number of data nodes increases.
The number of blocks is fixed to 1,000,000. N is the total number of data nodes,
Deister is configured with different number of group × group size.

of blocks in a 10,000 nodes cluster. The memory cost of HDFS
block management grows linearly with the increasing number of
blocks, but that of Deister remains constant with only 34 MB with
respect to 13.4 GB in HDFS. The reason behind this is that Deister
only stores data nodes information, block locations are calculated
in real time, requiring no memory space. Then, we examine the
memory usage trends as the number of data nodes increases, while
the number of blocks is fixed to 1,000,000. From Fig. 10, we can
see the memory usage of HDFS block management grows little,
since adding thousands of data nodes’ information objects require
negligible memory space. Deister’s memory usage grows linearly,
but with only tens of Megabytes, it can scale to 10,000 nodes.
Our results are also confirmed in [20,21]. It reports that the total
amount of metadata for storing 500 million blocks in HDFS will
occupy about 130 GB RAM on a namenode, among which block
management accounts for about 63% of total RAM used. And even
a 3.5 K-nodes cluster becomes unresponsive under heavy loads,
scaling to 10Knodes is unachievable.We conclude that,with about
50% less memory usage, Deister is expected to scale to double the
size of the current cluster.

4.1.3. Block location lookup
Since the location of a block in Deister is calculated in real

time, wemeasure the lookup latency of Deister comparing to HDFS
on CASS cluster as shown in Fig. 11. HDFS uses a hashmap to
index each block object and the block locations are recorded in
the block object. So the hashmap’s performance determinesHDFS’s
block location lookup time. The block location time in the figure is
averaged by looking up 10000 random blocks. From the result, we

Fig. 8. TestDFSIO throughput and average I/O rate.
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Fig. 11. Lookup latency.

Fig. 12. CPU usage of block maintenance with a cluster size of 10,000.

Fig. 13. CPU usage of block maintenance as system expands.

can see Deister’s lookup latency remains constant with only about
350 µs, while HDFS’s hashmap lookup time is constantly longer
and experiences a jumpwhen the number of blocks increases to 30
million. This is because Deister’smath lookup function is irrelevant
to the number of blocks, but for HDFS, as hashmap’s complexity is
O(1) ∼ O(n), more blocks in the hashmap will produce more hash
collisions, which will require longer lookup time.

4.2. Block maintenance

Block maintenance, including block consistency check and
block recovery is another overhead in current DiFS block manage-
ment. In Fig. 12, we show the CPU usage of block maintenance in
both HDFS and Deister. Both HDFS and Deister are initialized with
10,000 data nodes and 60million blocks, eachwith 3 replicas. Both
namenodes are deployed on CASS cluster. The block report inter-
val in HDFS is set to 1 h and the heartbeat interval in both HDFS
and Deister is set to 3 s. We assume the block reports’ arrival time
is evenly distributed in an hour, then there will be about 3 reports
processed in one second. Each report contains the information of
18,000 blocks. And we place a node failure at the 19th second. As
shown in Fig. 12, the block reports processing in HDFS occupies
about 25% of total namenode processing capacity. After HDFS na-
menode starts blocks recovery, the CPU usage increases to about
35%. While in Deister, there is only a short CPU usage jump when
node failure is detected. After the namenode finishes updating the
datanode map, CPU usage goes back to extremely low usage state
in which namenode only processes heartbeats from data nodes.

Fig. 14. CPU usage of block recovery in Deister data nodes.

Fig. 15. Recovery parallelism. Deister has an initial cluster size of 100 and an initial
recovery parallelism of 30.

Fig. 16. Datamovement and data distribution skew ratiowhen expanding a cluster
from 1000 nodes to 2000 nodes.

In Fig. 13, we further investigate how the CPU usage of block
maintenance varies with the increasing number of data nodes. For
HDFS, we measure the average CPU usage of both block report
processing and block report processing plus block recovery. And
for Deister, we capture its average CPU usage of updating datanode
map triggered by node failure. With increasing number of data
nodes, the CPU usages of block reports processing and block
recovery in HDFS increase by about 18% at 5000 data nodes scale.
And they follow the same increasing trend. This implies that the
CPU usage increase in HDFS block maintenance is mainly caused
by block reports processing, since the namenode has more block
reports to process with more data nodes. While in Deister, the CPU
usage has an increase of only about 5% when the cluster scales to
5000 data nodes. On the other hand, the CPU usage of updating
datanode maps increases with more groups in Deister. The reason
is well explained in Algorithm 1: each group containing the failed
node will have to find a live data node with minimum coverage to
replace the failed node, more groups a failed data node belongs to,
more computation is needed.

In Deister, the block maintenance is performed autonomously
on each data node. Fig. 14 shows the CPU usage of block
maintenance on a data node. In our experiment, we configure each
data node to reverse lookup all its stored blocks every 3 s for block
consistency check. We find that reversing 18000 blocks incurs
only about 0.025% CPU usage. In case of node failure, each data
node could independently compute the list of blocks it needs to
recover using the reverse lookup function. In this experiment, the
failed node is covered by 10 groups, so each node is responsible for
recovering 1800 blocks. After getting the list of blocks it needs to
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(a) Group size = 500. (b) Initial groups = 100.

Fig. 17. Average data distribution skew ratio when expanding the number of data nodes from 1000 to 2000.

recover, the block recovery process is the same as in namenode of
HDFS, which incurs only an average of about 6% CPU usage.

4.3. Reorganization and data movement

In this section, we evaluate Deister’s ability to handle cluster
node addition and removal.

4.3.1. Nodes failure
The data movement incurred by node failure in Deister is

optimal and the same as in HDFS. For node failure, we will be
focusing on evaluating the recovery parallelism. Fig. 15 shows the
recovery parallelism of both HDFS and Deister with increasing
number of data nodes. It is not a surprise that HDFS’s recovery
parallelism is always near cluster size, since each missing block’s
recovery target is randomly chosen across the cluster. But in
Deister, the recovery parallelism is determined by the number
of groups the failure node covers. In Fig. 15, the initial cluster
size for Deister is 100. We measure Deister’s recovery parallelism
under two settings. One has initial 60 groups with group size of
50 and the other has 150 groups with group size of 20. Group
size is fixed throughout expansion, while the number of groups
increases as system expands. In the result, we can see the recovery
parallelism is the same as the initial parallelism at points: 100, 200,
400, 800, 1600, but fluctuates at their intervals. The reason can be
well explained by Fig. 4 and Algorithm 2: newly added groups will
overlap all of its data nodes except the new nodes with existing
groups. This will make the old nodes cover more groups than new
nodes, resulting in higher recovery parallelism in old nodes. Thus
the average recovery parallelism will increase, but as old nodes in
the newgroups are gradually replacedwith newnodes, the average
recovery parallelism will drop to its initial size.

4.3.2. Nodes addition
In this section, we study the data movement and storage

balance when the system expands. Fig. 16 shows the data
movement factor decreases exponentially as the number of data
nodes expands. As Deister is designed to maintain system balance
dynamically, each time a new node is added, only 1

N of total data is
moved to this new node, where N is the current number of nodes.
Then, we examine Deister’s real time data distribution balance
as the system expands. The skew ratio in Fig. 16 is calculated as
covmax/covmin. In the results, we can see Deister’s data distribution
skew ratio varies little as system expands, but with more initial
groups, Deister has better overall balance. Therefore, we conduct
twomore experiments to further explore how distribution balance
is related to the initial number of groups and group size. The results
are shown in Fig. 17. The results indicate that higher number of
groups or group size will both produce better storage balance. For
data nodes with 1 TB capacity, 100 groups and 500 group size can
generate at most about 10 GB storage imbalance.

5. Conclusion

In this paper, we propose a light-weight autonomous block
management scheme for current data-intensive file system such
as HDFS. Deister features decoupled two-step block distribution
and autonomous block-node mapping maintenance on each data
node using invertible ISD. It could achieve optimal amounts of data
movement during node addition and removal. Deister is the first
system that is able to satisfy all the five desired properties: low
memory space cost, low maintenance cost, efficient addressing,
low-overhead scale-out ability and high recoverability. Results
show that, as compared with the HDFS default configuration,
Deister is able to achieve identical performance with a saving of
about half of the RAM space and 30% of processing capacity in
master node and is expected to scale to double the size of the
current clusters.
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