
DataNet: A Data Distribution-aware Method for Sub-dataset Analysis On

Distributed File Systems

Jun Wang, Jiangling Yin, Jian Zhou, Xuhong Zhang and Ruijun Wang

Department of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL

{jwang, jyin, jzhou, xzhang, ruijun}@eecs.ucf.edu

Abstract—In this paper, we study the problem of sub-dataset
analysis over distributed file systems, e.g, the Hadoop file sys-
tem. Our experiments show that the sub-datasets’ distribution
over HDFS blocks can often cause the corresponding analysis
to suffer from a seriously imbalanced parallel execution. This
is because the locality of individual sub-datasets is hidden by
the Hadoop file system and the content clustering of sub-
datasets results in some computational nodes carrying out
much more workload than others. We conduct a comprehensive
analysis on how the imbalanced computing patterns occur and
their sensitivity to the size of a cluster. We then propose a
novel method to optimize sub-dataset analysis over distributed
storage systems referred to as DataNet. DataNet aims to
achieve distribution-aware and workload-balanced computing
and consists of the following three parts. Firstly, we propose
an efficient algorithm with linear complexity to obtain the
meta-data of sub-dataset distributions. Secondly, we design
an elastic storage structure called ElasticMap based on the
HashMap and BloomFilter techniques to store the meta-data.
Thirdly, we employ a distribution-aware algorithm for sub-
dataset applications to achieve a workload-balance in parallel
execution. Our proposed method can benefit different sub-
dataset analyses with various computational requirements.
Experiments are conducted on PRObEs Marmot 128-node
cluster testbed and the results show the performance benefits
of DataNet.

I. INTRODUCTION

The advances in sensing, networking and storage tech-

nologies have led to the generation and collection of data

at extremely high rates and volumes. Large corporations,

such as Google, Amazon and Facebook produce and collect

terabytes of data with respect to click stream or event logs in

only a few hours [28, 22]. In order to ensure system security

and gain business intelligence [21] these data usually need

to be further grouped or selected for individual analysis. For

instance, in recommendation systems and personalized web

services, the analysis [15] on the webpage clicks streams

needs to perform user sessionization analysis so as to

provide better service for each user. Also, in network traffic

systems, flow construction [5] based on network traffic traces

should differentiate different types of network traffic and

conduct analysis accordingly. Also, in business transaction

analysis [12], data with specific features are usually selected

for fraud detection and risk evaluation. In this paper, the

�

�

�

��

��

��

� � �� �� 		
�
� �� �� �	 �� �� �� ��
�

��
	

��
��

��
���
��
��
��
��
��
�
��
�

����� !�"# $�

%��& '������������(� &���)��*�(� !�"#��

(a) The distribution of a sub-
dataset over HDFS blocks.

�

�

�

��

��

��

��

�
 � �� �	 �� �� �� �� �� 	��
��
���
��
��
��
��
��
��

��

+�(#!��������(� &���)��*�(�)����

,����$�

(b) workload distribution over
cluster nodes.

Figure 1: The content clustering causes imbalanced data com-

puting in parallel execution.

collection of data related to certain events or features is

referred to as a sub-dataset.

Currently, the Hadoop file system (HDFS) [26] is the de

facto open-source storage system in big data analysis. It can

be directly deployed on the disks of cluster nodes for local

data access. When storing a dataset, HDFS will divide the

dataset into smaller block files and randomly distribute them

with several identical copies (for the sake of reliability). In

practice, a large dataset may contain millions or billions

of sub-datasets such as advertisement clicks or event-based

log data [3, 2, 11]. The content of a single sub-dataset can

be stored in different HDFS blocks and each block usually

contains many sub-datasets.

Unfortunately, most sub-dataset analyses over HDFS have

the potential to suffer from a serious imbalance in parallel

execution. As shown in previous work [24, 4, 19, 16] sub-

datasets pertaining to related topics or features will often be

clustered together due to time or spatial locality, e.g. recently

uploaded ads/news usually receive clicks at higher rates than

older ones. This clustering of related data is referred to as

content clustering in this paper. Such a phenomenon can

result in an imbalanced computing in sub-dataset analysis

because analysis tasks, such as MapReduce [26], are usually

scheduled based on the HDFS block granularity without

considering the distribution of sub-datasets. We will analyze

how these imbalanced computing patterns occur and how

they are affected by the size of a cluster in Section II-B.

To demonstrate this problem, we launch a job running on

a 32-node cluster to perform analysis on a certain movie

from a dataset containing millions of movies [11]. The data

2016 IEEE International Parallel and Distributed Processing Symposium

1530-2075/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPS.2016.33

504

is chronologically organized and stored as HDFS blocks,

each being 64 MB and containing movies’ log data over a

period of time. Intuitively, the blocks corresponding to the

dates around the time of the release would contain most of

our desirable data. The data distribution of the movie within

128 HDFS blocks is shown in Figure 1(a). Clearly, the sub-

dataset distribution is far from balanced, e.g, the first 30

blocks contain the most of our desirable data. Since HDFS

doesn’t maintain the knowledge of sub-dataset distribution,

the locality scheduling based on HDFS blocks could result

in an imbalanced workload distribution over the cluster or

computation nodes during parallel execution as shown in

Figure 1(b). This imbalance could seriously degrade the

execution performance in many sub-dataset analyses. More

examples and detailed configurations are given in Section V.

A great deal of research has been proposed to address

the issues associated with logs and sub-dataset processing.

Charles [25] proposed two metrics to measure content clus-

tering, topic signatures and collection statistics. Flume [1] is

a distributed log collection system that can directly save the

collected data into HDFS for MapReduce analysis. Yin [28]

et al. proposed a framework that adopts an efficient group-

order-merge mechanism to provide faster execution on the

event logs. However, these methods do not address the im-

balanced distribution of sub-datasets in parallel computing.

To address the workload imbalance problem, LIBRA [7]

is proposed to adjust the workload among the reducers of

MapReduce applications through sampling the intermediate

data. SkewTune [17] can mitigate skew in MapReduce appli-

cations through observing the job execution and re-balancing

workload among the computing resources. However, these

methods need to dynamically monitor the task execution and

migrate workload for balanced execution during runtime.

In this paper, we aim to give a complete analysis and

solve the imbalanced distribution/computing problem of sub-

datasets over Hadoop clusters from the source. This will

require us to identify the sub-datasets’ distribution and fore-

see the possible imbalanced workload computation among

cluster nodes before launching the actual analysis tasks. One

challenge to achieve our goal is that obtaining and storing the

meta-data pertaining to the distribution of millions or billions

of sub-datasets could incur a substantial cost in memory and

CPU cycles. Another problem is the overhead involved in the

utilization of constructed meta-data. Since sub-datasets with

a small amount of data will have a lower probability to cause

a workload-imbalance, storing meta-data for all sub-datasets

will result in unnecessary computing resource usage.

To address the above challenges, we propose an effi-

cient sub-dataset distribution-aware method called DataNet.

DataNet uses an algorithm with a linear time complexity

to obtain the sub-datasets’ distribution. Instead of precisely

maintaining the distribution for all sub-datasets, DataNet

adopts an elastic data structure called ElasticMap to cap-

ture the approximate distribution of sub-datasets by distin-

guishing the dominant sub-datasets from the non-dominat

sub-datasets within block files. Using ElsaticMap, DataNet

enables sub-dataset analysis to achieve balanced computing

through a workload-balanced scheduling algorithm. Our

contributions in this paper are the following.

• We theoretically analyzed how an imbalanced data

distribution caused by the clustering of relevant data

within HDFS blocks affects parallel computing.

• We developed an efficient algorithm with linear com-

plexity to obtain the complete distribution of sub-

datasets through a single scan.

• We designed a new light-weight data structure called

ElasticMap, which can enable applications to quickly

obtain the distribution of desired sub-datasets with a

low overhead.

• We presented an effective workload-balanced algorithm

for parallel sub-dataset analysis. We prototyped and

evaluated DataNet against several well-known MapRe-

duce applications. The evaluation results confirm the

efficiency and effectiveness of our proposed methods.

The rest of the paper is organized as follows. Section

II demonstrates content clustering and formally describes

its effect on computational workload-imbalance. Section III

describes the design and construction of ElasticMap. Sec-

tion IV presents a sub-dataset distribution-aware algorithm.

Section V shows experimental results. Section VI discusses

related work and the final part is the conclusion.

II. CONTENT CLUSTERING AND SUB-DATASETS

IMBALANCED COMPUTING

A. Sub-Datasets Analysis and Content Clustering

Collecting and analyzing log or event data is important

for gaining business intelligence and ensuring system secu-

rity. For example, the well-known distributed log collection

system Flume [1] can directly save log data into a Hadoop

File System for distributed analysis. Log or event-based

datasets are usually lists of records, each consisting of

several fields such as source/user id, log time, destination,

etc. To discover knowledge, these data need to be further

filtered for individual analysis. Specifically, the sub-dataset

S(e) related to a specific event or topic analysis e could be

represented as follows,

S(e) = {r|related(r,e),r ∈ R} (1)

where R is the collection of all log records.

Researches [24, 4, 19, 16] have shown that sub-datasets

pertaining to related topics or features will often be clustered

together in most large datasets, e.g, the majority of logs

for a popular movie would be concentrated around the time

of its release. Also, photos or videos recently uploaded to

Facebook [24] are often retrieved/commented on at a much

higher rate than older ones. In a social network such as

LinkedIn or Twitter, users are prompted to group themselves

505

with others sharing similar skills or interests[4]. Moreover,

in graph processing, graph partitioning technologies tend to

place highly connected nodes in a single partition and the

nodes containing relatively few edges in separate partitions

in order to reduce communication between partitions [16].

However, in parallel data analysis applications such as

MapReduce, scheduling tasks based on block granular-

ity [26, 30, 29] without the consideration of the sub-datasets’

distribution does not result in an optimal scheduling for

parallel execution. In the next section, we will present

an analysis of the imbalanced workload for sub-dataset

processing in parallel execution.

B. Probability Analysis of Imbalanced Workload

Assume a set of parallel processes/executors are launched

on an m-node cluster to analyze a specific sub-dataset S,

which is distributed among n block files. Due to content

clustering, blocks will contain different amounts of data

from each sub-dataset. In most situations, the majority of

a given sub-dataset is contained in only a few blocks, while

other blocks may contain little data related to the sub-

dataset. We can model such a distribution using a Gamma

distribution, which is widely used to model physical quanti-

ties [18, 14] that take positive values such as information or

message distribution over time. In our analysis, we let the

amount of data contained by each block, X , follow a Gamma

distribution X ∼Γ(k,θ), and assume that each X for different

blocks is independent. To theoretically discuss the issue

of workload imbalance, we suppose that each cluster node

performs the analysis on an equal amount of n/m randomly

chosen blocks. By taking the summation of the independent

random variables X for each block, we obtain the amount

of workload processed on a cluster node, Z, which has the

distribution Z ∼ Γ(nk
m
,θ) and its density function is

f (z;
nk

m
,θ) =

1

Γ(nk
m
)θ

nk
m

z
nk
m −1e−

z
θ (2)

The ideal case is that each cluster node processes the same

amount of workload, that is, the expected value E(Z) = nkθ
m

.

However, with a different number of cluster nodes and data

blocks, we could have an imbalanced workload distribu-

tion, that is, some cluster nodes process significantly more

workload than the average while other cluster nodes process

much less than the average. To study this imbalance issue,

we compute the cumulative probability of the workload

performed by a cluster node as follows.

P(Z < w) =
∫ w

−∞
fZ(t)dt (3)

And the probability of a workload greater than w on the

node is

P(Z > w) = 1−

∫ w

−∞
fZ(t)dt (4)

� �� ��� ��� ��� ��� ��� ��� ���
�

����

���

����

���

����

���

����

	
���������������

�
��
��
��
���
�

��������� ��!!

���������� ��!!

����"��� ��!!

���"�� ��!!

� �� �� ��
�

����

����

���#

���$

���

%��&���'�(��
�)���*�������)

�
��
��
��
���
�

+�,,��'�������)�
Γ�&-���. θ-/!

Figure 2: As the size of the cluster increases, more and more

cluster nodes tend to have an imbalanced workload.

In general, the probability of the workload size on a clus-

ter node being an extreme value will increase as m increases.

For instance, given the value of k = 1.2,θ = 7 and n = 512,

we can observe from Figure 2 that P(Z < 1/3 ∗ E(Z)),
P(Z < 1/2 ∗E(Z)), P(Z > 2 ∗E(Z)) and P(Z > 3 ∗E(Z))
will increase with the growth of the cluster size. This implies

that a larger number of cluster nodes will result in a higher

chance of an imbalanced workload.

The expected number of nodes that will have a workload

of at most w is m ∗P(Z < w) while the expected number

of nodes that will have a workload of size greater than w

is m−m ∗ P(z < w). Based on the example in Figure 2

and given a cluster size of 128, the expected numbers of

nodes that will have a workload of less than 1/2∗E(Z) and

1/3 ∗E(Z) are 3.9 and 1.5 respectively; and the expected

number of nodes that will have a workload greater than

2 ∗E(Z) is 4.0. This implies that some nodes will have a

workload 4 to 6 times greater than others. This confirms the

observation shown in Figure 1. On the nodes with larger

workloads, a longer execution time is needed to finish the

tasks while the nodes with less workload will be idle for

a long time before performing the next phase of execution.

Experiments in Section V verify the theoretical analysis here

that the imbalanced distribution could result in an inefficient

parallel use of cluster resources and hence a low execution

performance.

III. SUB-DATASET DISTRIBUTION MANAGEMENT

The fundamental challenge of DataNet is to create a com-

pact meta-data storage to store the sub-dataset distributions

such that blocks with more data from a given sub-dataset

will have a higher priority to be considered for workload-

balanced computing in comparison with other blocks with

less data. In this section, we will present the corresponding

solutions for this challenge.

A. ElasticMap: A Meta-data Storage of Sub-datasets Over

HDFS Blocks

In order to obtain a sub-dataset distribution as shown

in Figure 1(a), DataNet maintains the size of data related

to each sub-dataset over block files, that is |bi

⋂
s j|, i =

1, ...,n, j = 1, ...,m, where bi is the set of data records on

506

the ith block and s j is one sub-dataset contained by bi. A

simple method of recording this information is to use a table

such as a hash map to store the pair 〈id,quantity〉, which

represents the id of a sub-dataset, e.g, source id or event

name, and the relative size of data associated with the sub-

dataset that resides on a block file. We show an example in

Table I, which records the number of reviews corresponding

to different movies within a block file.

Table I: The size information of movies within a block file

id movie 1 moive 2 ... movie m
of reviews 3578 3038 ... 1

The above method has a memory cost of order O(n∗m),
where the n is the number of blocks and m is the number

of sub-datasets. Since the size information will be stored

along with the master node and will be used by the task

scheduler to achieve a balanced computational workload as

shown in Section IV-B. In the case where the number of sub-

datasets is large, the meta-data could incur a high memory

cost. Therefore, in our implementation, we develop a data

structure called ElasticMap, which consists of a hash map

together with a bloom filter to store the size information of

sub-datasets. In comparison to a hash map, a Bloom Filter

uses a bitmap to represent the existence of sub-datasets in

a block. Bloom Filters are well-known for space-efficient

storage. For example, under a typical configuration, storing

a sub-dataset’s information over a single block in a HashMap

will cost 85 bits while using a bloom filter will cost 10 bits.

Because of content clustering, a small number of sub-

datasets could dominate the content of a block file while a

large number of sub-datasets could have a small amount of

data contained by the block. As the block containing a small

amount of a sub-dataset will have a negligible impact on the

workload-balance in sub-dataset analysis, a bloom filter is

sufficient to provide the information for sub-dataset’s tasks

assignment. Thus, we design the ElasticMap to store the

information of dominant sub-datasets in a hash map and

store that of non-dominant sub-datasets in a bloom filter.

Such a design is very flexible, as we can store all the meta-

data into the hash map when the memory is large enough

and store most of the information into the bloom filter when

the memory is limited.

Let n be the number of block files in a dataset. We

maintain an ElasticMap array to record the sub-datasets’

distribution information over n blocks. The array has n

pointers, each pointing to the meta-data over a block file.

Figure 3 shows an example of the data structure, where id

is the id of a sub-dataset. By querying this structure, we can

obtain the distribution of a sub-dataset over all block files.

According to the analysis of a bloom filter [6], if a

bloom filter aims to represent sub-datasets with false positive

probability ε , the average memory usage per sub-dataset can

be expressed as − ln(ε)
ln2(2)

. To evaluate how much memory

Figure 3: The DataNet meta-data structure over n block files.

space is needed to store an ElasticMap, we assume that

there are m sub-datasets contained by a block, in which α

percent of the sub-datasets will be stored in the hash map

and the others are put into the bloom filter. Assume each

record in the hash map uses a k-bit representation with the

load factor of δ , which is a measure of how full the hash

table is allowed to get, the memory cost of the ElasticMap

on one block is given in Equation 5.

Cost(memory) =
m∗ (1−α)∗ ln(ε)

ln2(2)
+

m∗α ∗ k

δ
(5)

B. ElasticMap Constructions

The design of the ElasticMap needs an efficient method

to decide which sub-datasets should be stored into the hash

map and which should be stored into the bloom filter.

An intuitive method to achieve this is to sort the sub-

datasets based on how much of their data is contained by

the block file and then store the sub-datasets with larger

size values into the hash map and others into the bloom

filter. Unfortunately, such a sorting method in the big data

era is not efficient, as the time complexity is O(m · logm),
where m is the number of sub-datasets in the block file.

In this section, we discuss how to efficiently separate the

sub-datasets without sorting.

In order to obtain the size information of sub-datasets over

a block bi, we define a series of size intervals or buckets,

and distribute the sub-datasets s j into the corresponding

buckets according to the size |bi ∩ s j| via a single scan of

the block. We maintain a variable S j for each sub-dataset

s j to compute |bi ∩ s j|. Before scanning, the variable S j is

set to 0. When a data record belonging to sub-dataset s j

is encountered, we increase the variable S j and adjust the

sub-dataset’s bucket accordingly. Due to content clustering,

the buckets corresponding to larger data sizes will contain a

smaller number of sub-datasets. Consequently, we could use

non-uniform buckets where larger data sizes have sparser

intervals. One instance is the following series of buckets

based on fibonacci sequence,

(0,1kb), [1kb,2kb), [2kb, 3kb), [3kb, 5kb), [5kb, 8kb),

[8kb, 13kb), [13kb,21kb), [34kb, ∞).

After the scanning is complete, we will have the number

of sub-datasets over each bucket. Then, we can decide which

sub-datasets should be put into the hash map with the

507

memory consideration based on Equation 5. Since a block

file will be dominated by a small number of sub-datasets and

will contain a small amount of data from many other sub-

datasets, it is sufficient for us to distinguish dominant sub-

datasets using a small number of buckets. For instance, to

deal with a block file of 64MB, one appropriate upper-bound

size is 32kb, since there will at most 64M/32k = 2048 sub-

datasets in the highest bucket, and we may put all of them

into the hash map with a small memory cost of around 16kb.

On the other hand, one appropriate lower-bound of the size is

1kb, since the sub-datasets smaller than 1k have little impact

on the workload-balance and thus we can put them into a

bloom filter. Therefore, tens of buckets could be sufficient

to separate the dominant sub-datasets within the block file.

In fact, our algorithm for dominant sub-dataset separation

is based on Bucket/Count sorting [10]. However, we are

not actually sorting these sub-datasets, we only need to

know the statistic value on different buckets to identify the

dominant datasets and put them into the hash map. The time

complexity of our algorithm is O(m), where m is number of

sub-datasets contained by a block. To deal with n blocks, the

time complexity is O(m∗n), which means only a single scan

of the raw data is needed for the meta-data construction.

IV. SUB-DATASET DISTRIBUTION-AWARE COMPUTING

With the use of ElasticMap, we could identify the im-

balanced distribution of sub-datasets before launching the

actual analysis tasks. In this section, we will present a

distribution-aware method for sub-dataset analysis applica-

tions to achieve balanced computing.

A. Sub-dataset Distribution In Hadoop Clusters

Based on the block-locality driven scheduling in Hadoop

systems and our analysis in Section II, we can optimize data

processing with the knowledge of sub-dataset distribution

over HDFS blocks. To achieve this, we build the distribution

relationship between cluster nodes and block files, where a

block file is mapped to three cluster nodes and different

block files contain different amounts of each sub-dataset.

The sub-dataset distribution could be retrieved from the

ElasticMap during task scheduling.

The distribution relationship with respect to a sub-dataset

s is represented as a Bipartite Graph G = (CN,B,E), where

CN = {cn0,cn1, ...,cnn} and B = {b0,b1, ...,bm} are the

vertices representing the cluster nodes and HDFS block files

respectively and E ⊂CN×B is the set of edges between CN

and B. There exists an edge connecting a computation node

cni ∈CN and a block b j ∈B if and only if b j is placed on cni.

There may be several edges connected to a block b j since

a block has several copies stored on different cluster nodes.

Each edge is configured with a weight equal to |b j ∩ s|, the

size of the sub-dataset s contained by the block file b j, which

can be obtained through the ElasticMap array.

�

Figure 4: An example of a bipartite graph representing

cluster nodes and block files. The edges represent the co-

location of block files and cluster nodes, and the weight

values of edges adjacent to node b j is size of the sub-dataset

s contained by block file j.

We show a bipartite graph example in Figure 4. The

vertices at the bottom represent cluster nodes, while those

at the top represent block files. Each edge indicates that a

block file b j is located on a cluster node cni with a weight

|b j∩s|. Based on this mapping information, we can optimize

sub-dataset assignments according to different computation

requirements such as workload balance among cluster nodes

or reducing the data transferred for data aggregation.

B. Sub-dataset Distribution-aware Scheduling

To balance the workload among cluster nodes, we first

compute the total size of a sub-dataset as follows,

Z = (∑
b j∈τ1

|s∩b j|+δ ∗ |τ2|) (6)

where s is a given sub-dataset, τ1 is the set of blocks that

have the size information of s in the hash map, τ2 is the set of

blocks that have the size information of s in the bloom filter,

and δ , the smallest size value of |s∩b j|, is the approximate

data size per block that belongs to sub-datasets stored in

the bloom filter. According to the computing capability of

computational nodes, we can calculate the amount of sub-

datasets to be assigned to each node.

We present a distribution-aware algorithm to balance the

workload among computation nodes as shown in Algo-

rithm 1. The algorithm aims to allow each computation node

to have an equal amount of workload to be processed. The

tasks are assigned with two considerations, the first is to

assign local blocks to the requesting computation node i (line

8) while the second is to compare the current workload on

node i with the average amount of workload (line 10, 14).

In general, for applications with heavy computational re-

quirements at the map phase, such as similarity computation,

Algorithm 1 is useful to balance the parallel execution time.

In a homogeneous execution environment, we can actually

compute an optimized task assignment through the Ford-

Fulkerson method [10]. For applications with aggregation

requirements, the output may need to be transferred over

the network and finally written into HDFS with several

files. For these applications, in which the amount of output

could be determined by the size of the input sub-dataset,

ElasticMap can also be used to minimize the data transferred

508

�

�

��

�

��

��

���

���

�-.$,/%.0 +-1�2-3, �$�-/1%� -45�0%12�

-*�(�!!�2�67�(���)����

$,/%.0 +-1�2-3, �$�-/1%� -45�
89������,�� 8��������,��

(a) Overall execution comparison.

�

�

	

�

�

��

��

��

� �� 		
� �� �� �� ��
	

��
�

�

�

��
�

��
�

��
	

��
�

��
�

�

��

��
���
��
��
��
��
��
�
��

%��& '������������(� &���)�

����� !�"# $�

(b) Size of data over HDFS blocks.

�

�

��

��

	�

�

��

� 	 � � � �� �	 �� �� �� �� �	 �� �� �� 	�

�
��
���
��
��
��
��
��
�
��

+�(#!��������(� &���)�
89������,�� 8��������,��

2!&���(�,����$�

(c) Workload distribution after selection.

Figure 5: Overall comparisons on a 32-node cluster

Algorithm 1 Distribution-aware Algorithm for Balanced

Computing over a Sub-dataset s

1: Let di be the set of blocks adjacent to cluster node cni

in the bipartite graph G.

2: Let T = {t0, t1, ..., tn−1} be the set of tasks corresponding

to the n blocks.

3: Let |b j

⋂
s| be the size of sub-dataset s in block j.

4: Let Wi be the current workload on cluster node cni.

Steps:

5: Compute the average workload W =(∑b j∈τ1
|s∩b j|+δ ∗

|τ2|)/m, where m is the total number of cluster nodes

6: while |T | 	= 0 do

7: if a worker process on cni requests a task then

8: if |di| 	= 0 then

9: Find bx ∈ di such that

10: x = argmin
x

|Wi +bx

⋂
s−W |

11: Assign tx to the requesting process on node i

12: else

13: Find tx ∈ T such that

14: x = argmin
x

|Wi +bx

⋂
s−W |

15: Assign tx to the requesting process on node i

16: end if

17: Remove tx from T

18: for all cnk adjacent to bx in G do

19: Remove the edge (cnk,bx) from G

20: end for

21: end if

22: end while

with the knowledge of sub-dataset distributions. We leave the

optimization of the sub-dataset transfer problem as a future

work.

V. EXPERIMENTAL RESULTS AND EVALUATIONS

We conduct comprehensive experiments on Marmot to

show the benefits of DataNet in parallel big data computing

with the MapReduce programming model. Marmot is a

cluster of the PRObE on-site project [13] that is housed

at CMU in Pittsburgh. The system has 128 nodes / 256

cores and each node in the cluster has dual 1.6GHz AMD

Opteron processors, 16GB of memory, Gigabit Ethernet,

and a 2TB Western Digital SATA disk drive. For our

experiments, all nodes are connected to the same switch.

The Hadoop system is configured as follows: one node is

designated to be the NameNode/JobTracker, one node is

the secondary NameNode, and other cluster nodes are the

DataNodes/TaskTrackers. HDFS is configured with 3-way

replication and the size of a chunk file is set to 64 MB.

A. DataNet Evaluation

To test DataNet for sub-dataset analysis under Hadoop

frameworks, we first launch map tasks to filter out our

target sub-dataset and store them locally on the cluster

nodes. Then, we run various analysis jobs with different

computation patterns to process the filtered sub-dataset and

compare their performance. We employ two methods for the

map task assignments. The first method (without DataNet)

is the default block locality-driven scheduling used by the

Hadoop system [26]. The second method (with DataNet)

is our proposed distribution-aware method introduced in

Section IV-B. For the meta-data stored in ElasticMap, we

set the value of α in Equation 5 to 0.3. We will specifically

discuss the performance of ElasticMap as α changes in

Section V-B.

We implement the following analysis jobs with the

MapReduce interface.

• Moving Average: analyzing data points by creating a

series of averages over intervals of the full dataset.

Moving Average is often implemented in the analysis

of trend changes and can smooth out short-term fluctu-

ations to highlight longer-term cycles.

• Top K Search: finding K sequences with the most

similarity to a given sequence. This algorithm needs

heavy computation due to the similarity comparison

between sequences.

• Word Count: reading the sub-dataset and counting how

often words occur. Word Count is one of the represen-

tative MapReduce benchmark applications.

• Aggregate Word Histogram: computing the histogram of

the words in the input sub-dataset. This is a fundamental

plug-in operation in the MapReduce framework.

In our experiments, we mainly use a dataset consisting of

movie ratings and reviews stored in chronological order in

509

�

�

��

�

��

��

� 	 � � � �� �	 �� �� �� �� �	 �� �� �� 	�

�7�5����("��0:�"&���)��6�����
89������,�� 8��������,��

2!&���(�,����$�

(a) The map execution time distribution

�

�

��

�

��

89������,�� 8��������,��

��*�);�%*�(�;��
��) %*�(�;� ��:

(b) The Moving Average map time(s).

�

�

��

�

��

89������,�� 8��������,��

+�(��2�&)�
��) %*�(�;� ��:

(c) The Word Count map time(s).

Figure 6: The map execution time(s) comparison on the filtered sub-dataset.

HDFS. The dataset is based on the distribution of the movie

names, ratings and categories of “MovieLens” [11]. The

text reviews are randomly generated and we also randomly

duplicate some ratings for large-scale tests. The total number

of block files is 256.

1) Overall Comparison: The overall execution times for

the four analysis jobs from 32 cluster nodes are shown

in Figure 5(a). As we can see, in all cases, the parallel

execution time with the use of DataNet is smaller than

that without DataNet. This can be explained by the fact

that, without the use of DataNet, certain nodes will have a

heavier workload than others, resulting in longer execution

times and degrading the overall performance. Besides, we

find that DataNet can achieve greater improvements for

computationally intensive applications such as TopK Search

in comparison to MovingAverage. In all, with DataNet, the

improvements of MovingAverage, WordCount, Histogram

and TopKSearch are 20%, 39.1%, 40.6% and 42% respec-

tively.

Figure 5(b) shows the sub-dataset distribution over the

HDFS blocks, where a small number of blocks contain most

of our target data due to content clustering; that is, most

reviews about a movie are clustered around the time of

the release. Figure 5(c) shows the workload corresponding

to the size of the filtered sub-datasets over the cluster

nodes. As we can see, without DataNet, the workload of

node 25 was significantly higher than the workload of node

17. Such a distribution is far from being balanced for the

subsequent analysis and this explains the performance gain

in Figure 5(a).

2) Map Execution Time on the Filtered Sub-dataset:

To gain further insight into the performance, we monitor

the map execution time comparison on the filtered data for

the sub-dataset analysis jobs. Figure 6(a) shows the local

execution time of Top K Search on all 32 cluster nodes. From

the figure, we can find that the slowest execution time is 64

seconds while the fastest execution time is 5 seconds. This

could lead to a longer synchronization time to execute the

next analysis phase and result in a longer overall execution

as shown in Figure 5(a).

With different computational requirements, the imbal-

anced workload could have different effects on the per-

formance of analysis jobs. To demonstrate this, In Fig-

ure 6(b)(c), we show the min, average and max execution

times on the the filtered sub-dataset for Moving Average

and Word Count on 32 nodes. From the figure, we can find

that the gap between the min and max times for Moving

Average is much smaller than that of Word Count. This is

because Word Count needs to combine words while Moving

Average only needs to iterate the data. Therefore, with

greater computational requirements, the issue of imbalance

becomes more serious.
3) Shuffle Execution Time Comparison: The shuffle

phase [26] starts whenever a map task is finished and ends

when all map tasks have been executed. We expect that the

the shuffle time would be much longer with an imbalanced

workload among the cluster nodes. To demonstrate how the

imbalance affects the shuffle phase, we collect the min,

average and max execution times for shuffle tasks in the

Top K Search and Word Count analyses, and show the

comparison in Figure 7. From the figure, we can find that the

shuffle phase without the use of DataNet takes 4-5X longer

than with DataNet. We also find that the speedup of Top K

Search is greater than that of Word Count. This is because

the Top K Search takes more time for map execution as

shown in Figure 6.

�

�

��

�

��

��

89������,�� 8��������,��

+�(�2�&)�

��) %*� ��:

�

�

��

�

��

��

89������,�� 8��������,��

�75���("���

��) %*� ��:

Figure 7: The execution time(s) comparison at shuffle phase.

4) More Results and Discussion: We also run experi-

ments on GitHub event log data [2]. The datasets provide

more than 20 event types ranging from new commits and

fork events to opening new tickets, commenting, and adding

members to a project. The size of the raw data is around 34

GB. The experimental setting is the same as with the movie

data. We run analysis jobs on “IssueEvent”. Figure 8(a)

shows the sub-dataset distribution on the first 128 HDFS

blocks. As we can see, the sub-dataset distribution doesn’t

satisfy the property of content clustering. However, since the

distribution over HDFS blocks is imbalanced, with the use of

510

�

�
�<�
�

�<�
	

	<�

<�
� �� �� �� 	�
� �� �
 �	 �� �� ��
�

��
�

��
�

��
�

$��&���0*�)������(� &���)����

����� !�"# $�

(a) Size of data in HDFS blocks

�

���
���
���
���
�
�
���
���
���

��
� �� ��� �	� ��� ��� ��� ��� ��� 	��

+�(#!��������(� &���)������

,����)&6 �(�

(b) Workload distribution

Figure 8: The imbalanced data distributions and workload of

IssueEvent from GitHub data.

ElasticMap, we still can optimize task assignment to meet

the balanced computation requirement using Algorithm 1.

Specifically, to run the Top K Search job, the longest map

execution time is 125 seconds without the use of DataNet

and 107 seconds with DataNet. However, we find that the

overall improvement is much less than that of the movie

dataset. This is because the movie dataset has a more im-

balanced sub-dataset distribution due to content clustering,

which could cause a more imbalanced workload distribution

when scheduling tasks without the distribution knowledge

provided by ElasticMap. This can be seen by comparing

Figure 6(c) and Figure 8(b).

In order to achieve a workload-balance computation for

parallel execution, an alternative method is to dynamically

monitor the runtime status [17] and migrate workloads when

necessary. Specifically, for sub-dataset processing, we can

rebalance the sub-dataset distribution among cluster nodes

after the map task’s execution on the sub-dataset selection.

With the example without DataNet in Figure 5(c), we find

that almost every cluster node will transfer or receive sub-

datasets and the overall percentage of data migration is more

than 30%. Besides the overhead of collecting statistics and

adjusting workload during runtime, the data migration could

occupy the network resource and prolong the overall exe-

cution in comparison with DataNet, which can foresee the

imbalanced issue in advance. In comparison, DataNet will

scan the raw data once to build all sub-dataset distributions,

while the method of dynamic adjugement will migrate the

workload for each sub-dataset analyses during runtime. We

will specifically discuss the efficiency of DataNet in the next

section.

B. Efficiency of DataNet

1) Memory Efficiency and Accuracy of ElasticMap: The

goal of ElasticMap is to store the information of sub-

datasets’ distribution in a compact fashion. With different

data distributions, the memory cost on the meta-data storage

could vary. For datasets with a high degree of content

clustering or a limited number of events, such as GitHub

event logs, the size ratio of raw data to meta-data could be

very large. We studied the memory efficiency of ElasticMap

over the movie dataset and show the results in Table II.

The first column of the table represents the percentage of

elements stored in the hash map. The last column represents

the size ratio of raw data to meta-data. The second column

represents the accuracy of ElasticMap calculated as,

χ = 1−
∑b j∈τ1

(|S∩b j|+δ ∗ |τ2|)−Size o f raw data

Size o f raw data

where S is the union of all sub-datasets, and b j, τ1, τ2, and

δ have the same meaning as in Equation 6

α in Equation 5 Accuracy(χ) Representation ratio

51% 97% 1857

40% 93% 2270

31% 88% 2751

25% 83% 3196

21% 80% 3497

Table II: The efficiency of ElasticMap

As we can see, for cases in which a small percentage

of elements are stored in the hash map, there is a higher

representation ratio but a lower overall accuracy. For exam-

ple, in the case where 21% of the elements are stored in

the hash map, 1 MB of meta-data in the ElasticMap can

represent around 3497 MB of raw data. On the other hand,

in the case where 51% of the elements are stored in the

hash map, the overall accuracy of DataNet rises to 97% but

the representation ratio dropped to 1857. This is due to the

fact that the bloom filter can only indicate the existence of

a sub-dataset within a block rather than the real size of the

sub-dataset.

We also perform accuracy evaluations on individual

movies with different sizes. The results are shown in Fig-

ure 9. As we can see, for sub-datasets with larger sizes, the

difference between the actual size of the sub-dataset and

the size calculated through Equation 6 is smaller. This is

because the sub-datasets are dominant on most blocks and

so they are precisely recorded in the hash map.

�

�<�

�

�

	�

���

���

� � �� �� �� �� 	� 	�
�
� �� �� �� �� �� �� �� ��

��
��

��
���

	

��

�
�

��
��

�
��

�& '�����������

%""&(�"=����$)��*��&�!��& ���������

���������& '����������0>&����)���
%"�&�!����������& '��������

Figure 9: The accuracy of ElasticMap with respect to dif-

ferent sub-datasets.

A greater difference occurs for sub-datasets with a size

less than 32 MB. This could be explained by the fact that

these sub-datasets are not dominant on most HDFS blocks

and they are inaccurately recorded in the bloom filter. Never-

theless, as these sub-datasets have little data, there will be a

lower probability for them to cause imbalanced computing.

On the other hand, with the knowledge of ElasticMap, we

can reduce the I/O cost, since we don’t need to process

511

�

�

�<�

�<

�<�

�<�

�

�

�<�

�<

�<�

�<�

�

��
�? ��
?

��
?

	
?

	�
?

		
?

��
?

��
?

�	
?

��
?

��
?

��
?

��
?

��
?

�	
?

��
?

��
��

�
��

�
��

��
��

��
��

�
�

��: ��) %*� ���

@��)�0>&����)���

Figure 10: Balancing evaluation; the comparison of maxi-

mum, minimum, average workload and the std deviation on

32 compute nodes with different α in Equation 6.

blocks that don’t contain our target data (no records in the

hash map and bloom filter).

In a real-time or interactive execution environment,

recording the meta-data in memory could be efficient. How-

ever, as the problem size becomes extremely large, the meta-

data may not be able to reside in memory. In such cases, the

meta-data can be stored into a database or distributed among

multiple machines. We leave this problem as future work

and focus on the study and analysis of the imbalanced sub-

dataset distribution and computing over Hadoop clusters.

2) The Degree of Balanced Computing: When more sub-

datasets are stored in the hash map with a higher memory

cost, a higher accuracy could be achieved. This can pro-

duce a better workload balance through distribution-aware

scheduling. We also run experiments with different α values

and study the degree of load balance. The test sub-dataset

shares the same distribution in Figure 5. The results are

shown as Figure 10. From the Figure, we can find that with

only about 15% of the sub-datasets recorded in the hash map,

DataNet is able to achieve a satisfactory workload balance,

i.e. the max workload is around 0.9 while the min is around

0.7. Changing the percentage from 15 to 100 will have

little effect on workload balance. The main reason behind

these results is that content clustering is the main cause of

workload imbalance, and with about 15% of the sub-datasets

stored in the hash map, these clustered data could be detected

and thus handled using Algorithm 1.

VI. DISCUSSION AND RELATED WORKS

To provide faster execution on the log files, Yin [28] et al.

proposed a framework with a group-order-merge mechanism

and Logothetis [23] et al. proposed a in-situ MapReduce

architecture to mine the data “on location”. To efficiently

process ordered datasets in HDFS, Chen [8] et al. proposed

a bloom filter-based approach to avoid unnecessary sorting

and improve the performance of MapReduce. VSFS [27] is

a searchable distributed file system for addressing the needs

of data filtering at the file system-level. HBase is an open

source implementation of Google’s BigTable and the bloom

filter used by HBase can greatly reduce the I/O cost during

data selection. However, none of these methods address the

sub-datasets’ imbalanced distribution in parallel computing.

There have also been researches proposed to address

data skew problem for MapReduce applications. LIBRA [7]

addresses the data skew problem among the reducers of

MapReduce applications through sampling the intermediate

data. SkewTune [17] can mitigate skew in MapReduce appli-

cations through observing the job execution and re-balancing

workload among the computing resources. Coppa [9] de-

signs a novel profile-guided progress indicator which can

predict data skewness and stragglers so as to avoid excessive

costs. CooMR [20] is a cross-task coordination framework

that can enable the sorting/merging of Hadoop intermediate

data without actually moving the data over the network.

DataNet is orthogonal to these techniques and can proac-

tively address the imbalanced computing through its sub-

dataset distribution aware algorithm.

VII. CONCLUSION

In this paper, we investigate the issues of imbalanced sub-

dataset analysis over a Hadoop cluster. Due to the missing

information of sub-datasets’ locality, the content clustering

inherent in most sub-datasets prevents applications from

efficiently processing them. Through a theoretical analysis,

we conclude that an uneven sub-dataset distribution almost

always leads to a lower-performance in parallel data analy-

sis. To address this problem, we propose DataNet to support

sub-dataset distribution-aware computing. DataNet uses an

elastic structure, called ElasticMap, to store the sub-dataset

distributions. Also, a dominant sub-dataset separation algo-

rithm is proposed to support the construction of ElasticMap.

With the use of DataNet, sub-dataset analyses can easily

balance their workload among computational nodes. We

conduct comprehensive experiments for different sub-dataset

applications with the use of DataNet and the experimental

results show the promising performance of DataNet.

ACKNOWLEDGMENTS

This work is supported in part by the US National Sci-

ence Foundation Grant CCF-1527249, CCF- 1337244 and

National Science Foundation Early Career Award 0953946.

This material is based upon work supported by the Na-

tional Science Foundation under the following NSF pro-

gram: Parallel Reconfigurable Observational Environment

for Data Intensive Super-Computing and High Performance

Computing (PRObE).

REFERENCES

[1] Flume: Open source log collection system.

https://flume.apache.org/.

[2] Github events. https://www.githubarchive.org/.

[3] World cup 1998 dataset. http://goo.gl/2UqlS.

[4] J.-E. Asbury. Overview of focus group research.

Qualitative health research, 5(4):414–420, 1995.

[5] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and

M. Arlitt. A comparative analysis of web and peer-to-

peer traffic. In Proceedings of the 17th International

512

Conference on World Wide Web, WWW ’08, pages

287–296, New York, NY, USA, 2008. ACM.

[6] B. H. Bloom. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM,

13(7):422–426, 1970.

[7] Q. Chen, J. Yao, and Z. Xiao. Libra: Lightweight data

skew mitigation in mapreduce. Parallel and Distributed

Systems, IEEE Transactions on, 26(9):2520–2533, Sept

2015.

[8] Z. Chen, D. Wu, W. Xie, J. Zeng, J. He, and D. Wu.

A bloom filter-based approach for efficient mapreduce

query processing on ordered datasets. In Advanced

Cloud and Big Data (CBD), 2013 International Con-

ference on, pages 93–98, Dec 2013.

[9] E. Coppa and I. Finocchi. On data skewness, stragglers,

and mapreduce progress indicators. In Proceedings of

the Sixth ACM Symposium on Cloud Computing, SoCC

’15, pages 139–152, New York, NY, USA, 2015. ACM.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

et al. Introduction to algorithms, volume 2. MIT press

Cambridge, 2001.

[11] S. Dooms, T. De Pessemier, and L. Martens. Movi-

etweetings: a movie rating dataset collected from twit-

ter. In Workshop on Crowdsourcing and Human

Computation for Recommender Systems, CrowdRec at

RecSys 2013, 2013.

[12] T. Fawcett and F. Provost. Activity monitoring: Notic-

ing interesting changes in behavior. In Proceedings

of the fifth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 53–62.

ACM, 1999.

[13] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.

Probe: A thousand-node experimental cluster for com-

puter systems research. volume 38, June 2013.

[14] J. Gill. Bayesian methods: A social and behavioral

sciences approach, volume 20. CRC press, 2014.

[15] J. Hu, H.-J. Zeng, H. Li, C. Niu, and Z. Chen. Demo-

graphic prediction based on user’s browsing behavior.

In Proceedings of the 16th International Conference

on World Wide Web, WWW ’07, pages 151–160, New

York, NY, USA, 2007. ACM.

[16] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A

study of skew in mapreduce applications. Open Cirrus

Summit, 2011.

[17] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-

tune: Mitigating skew in mapreduce applications. In

Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’12,

pages 25–36, New York, NY, USA, 2012. ACM.

[18] J. F. Lawless. Statistical models and methods for

lifetime data, volume 362. John Wiley & Sons, 2011.

[19] Y. Le, J. Liu, F. Ergun, and D. Wang. Online load

balancing for mapreduce with skewed data input. In IN-

FOCOM, 2014 Proceedings IEEE, pages 2004–2012.

IEEE, 2014.

[20] X. Li, Y. Wang, Y. Jiao, C. Xu, and Y. Weikuan.

Coomr: Cross-task coordination for efficient data man-

agement in mapreduce programs. In High Performance

Computing, Networking, Storage and Analysis (SC),

2013 International Conference for, pages 1–11, Nov

2013.

[21] G. S. Linoff and M. J. Berry. Data mining techniques:

for marketing, sales, and customer relationship man-

agement. John Wiley & Sons, 2011.

[22] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum.

In-situ mapreduce for log processing. In Proceedings

of the 2011 USENIX Conference on USENIX Annual

Technical Conference, USENIXATC’11, pages 9–9,

Berkeley, CA, USA, 2011. USENIX Association.

[23] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum.

In-situ mapreduce for log processing. In Proceedings

of the 2011 USENIX Conference on USENIX Annual

Technical Conference, USENIXATC’11, pages 9–9,

Berkeley, CA, USA, 2011. USENIX Association.

[24] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,

W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,

et al. f4: Facebooks warm blob storage system.

In Proceedings of the 11th USENIX conference on

Operating Systems Design and Implementation, pages

383–398. USENIX Association, 2014.

[25] C. L. Viles and J. C. French. Content locality in

distributed digital libraries. Information Processing &

Management, 35(3):317 – 336, 1999.

[26] T. White. Hadoop: The definitive guide. ” O’Reilly

Media, Inc.”, 2012.

[27] L. Xu, Z. Huang, H. Jiang, L. Tian, and D. Swanson.

Vsfs: A searchable distributed file system. In Proceed-

ings of the 9th Parallel Data Storage Workshop, PDSW

’14, pages 25–30, Piscataway, NJ, USA, 2014. IEEE

Press.

[28] J. Yin, Y. Liao, M. Baldi, L. Gao, and A. Nucci. A

scalable distributed framework for efficient analytics

on ordered datasets. In Proceedings of the 2013

IEEE/ACM 6th International Conference on Utility and

Cloud Computing, UCC ’13, pages 131–138, Washing-

ton, DC, USA, 2013. IEEE Computer Society.

[29] J. Yin, J. Wang, W.-c. Feng, X. Zhang, and J. Zhang.

Slam: Scalable locality-aware middleware for i/o in sci-

entific analysis and visualization. In Proceedings of the

23rd International Symposium on High-performance

Parallel and Distributed Computing, HPDC ’14, pages

257–260, New York, NY, USA, 2014. ACM.

[30] J. Yin, J. Wang, J. Zhou, T. Lukasiewicz, D. Huang,

and J. Zhang. Opass: Analysis and optimization of par-

allel data access on distributed file systems. In Parallel

and Distributed Processing Symposium (IPDPS), 2015

IEEE International, pages 623–632, May 2015.

513

